Аннотация:
Рассматривается процесс фильтрации двухфазной жидкости в пористой неоднородной среде. Данный процесс описывается связанной системой уравнений для насыщенности, скорости фильтрации и порового давления. Рассмотрены математические модели с учетом и без учета капиллярных сил, при наличии которого для насыщенности имеем нестационарное уравнение конвекции-диффузии. Поскольку данный процесс характеризуется существенным преобладанием конвективного слагаемого в уравнении для насыщенности, используются противопотоковые аппроксимации посредством добавления неоднородной искусственной диффузии. Скорость и давление аппроксимируются с использованием смешанного метода конечных элементов. Представлены результаты численных расчетов для двумерного случая с сильно неоднородными коэффициентами проницаемости пористой среды. Рассмотрены несколько случаев, связанных с линейными и нелинейными коэффициентами относительной проницаемости флюида и наличием капиллярных сил.
Ключевые слова:пористая среда, двухфазная фильрация, метод конечных элементов, метод Галеркина, численное моделирование.