Аннотация:
Исследовано существование левосторонних, правосторонних и двусторонних обратных матриц для так называемых гауссовых бесконечных матриц, т. е. для верхних бесконечных треугольных матриц с отличными от нуля элементами на главной диагонали. Доказано существование единственной двусторонней обратной матрицы для гауссовых матриц. Найдено явное выражение обратной матрицы для гауссовой матрицы любого порядка, в частности, и для бесконечного случая. Данное выражение удобно для его реализации на ПК, поскольку вычисления основаны на рекуррентных соотношениях. Такой подход можно распространить и для так называемых треугольных бесконечных матриц, т. е. для нижних бесконечных треугольных матриц с отличными от нуля элементами на главной диагонали. Таким образом, появляется возможность обращения бесконечной матрицы с бесконечным рангом, поскольку такие матрицы разлагаются на произведение двух матриц: треугольной и гауссовой матриц.
Ключевые слова:бесконечные системы, линейные алгебраические уравнения, бесконечные треугольные и гауссовы матрицы, обратные матрицы, бесконечный определитель.