Аннотация:
Впервые метрическая связность с векторным кручением, или полусимметрическая метрическая связность, была открыта Э. Картаном. Позднее свойства данной связности изучали многие математики. Так, например, К. Яно, И. Агрикола и другие математики исследовали свойства тензора кривизны, геодезические линии, а также поведение связности при конформных деформациях исходной метрики.
В данной работе исследуется уравнение Эйнштейна на трехмерных локально однородных (псевдо)римановых многообразиях с метрической связностью с инвариантным векторным кручением. Доказана теорема о том, что все такие многообразия либо являются многообразиями Эйнштейна относительно связности Леви-Чивита, либо конформно плоские. Ранее авторами исследовалось уравнение Эйнштейна в случае трехмерных локально симметрических (псевдо)римановых многообразий.