Аннотация:
В счетно-нормированных пространствах функций на торе, гладких по одной или обеим переменным, изучаются операторы Теплица с символами, обеспечивающими ограниченность этих операторов в указанных пространствах. Для исследования операторов типа бисингулярных в пространствах суммируемых и гёльдеровских функций применялся метод частичной регуляризации. Этим методом в данной работе получена конструкция регуляризатора и условие нётеровости оператора Теплица в счетно-нормированном пространстве функций, гладких по одной из переменных. Несмотря на то, что в множестве нётеровых операторов в этом пространстве в отличие от случая банаховых пространств имеются операторы с обращающимися в нуль на торе символами, эти результаты вполне аналогичны случаю банаховых пространств. Иначе обстоит дело в пространстве функций, гладких по обеим переменным. Показано, что метод частичной регуляризации неприменим в том пространстве.