Аннотация:
Рассматривается первая краевая задача для уравнения смешанного типа второго порядка, когда уравнение принадлежит эллиптическому или гиперболическому типу вблизи оснований цилиндрической области пространства $R^{n+1}$. Для исследования первой краевой задачи используется модифицированный метод Галеркина с привлечением метода регуляризации. Для решения первой краевой задачи строится приближенное решение с помощью соответствующей краевой задачи для системы ОДУ третьего порядка. Далее устанавливается оценка погрешности модифицированного метода Галеркина через параметр регуляризации и собственные числа задачи Дирихле для оператора Лапласа по пространственным переменным.
Ключевые слова:метод Галёркина, уравнение смешанного типа, первая краевая задача, априорная оценка, оценка погрешности, регуляризация.