RUS  ENG
Полная версия
ЖУРНАЛЫ // Журнал Средневолжского математического общества // Архив

Журнал СВМО, 2020, том 22, номер 1, страницы 81–93 (Mi svmo762)

Эта публикация цитируется в 1 статье

Математика

Об одной нелокальной краевой задаче с наклонной производной

К. Ж. Назарова, Б. Х. Турметов, К. И. Усманов

Международный казахско-турецкий университет им. Х. А. Ясави

Аннотация: Работа посвящена исследованию вопросов разрешимости нелокальной краевой задачи для уравнения Лапласа. Нелокальное условие вводится с помощью преобразований в пространстве $R^{n}$, осуществляемых некоторой ортогональной матрицей. Приведены примеры и свойства таких матриц. Для исследования основной задачи сначала решается вспомогательная нелокальная задача типа Дирихле для уравнения Лапласа. Данная задача сводится к векторному уравнению, элементами которого являются решения классической задачи Дирихле. При выполнении некоторых условий для коэффициентов в граничном условии доказаны теоремы о единственности и существовании решения задачи типа Дирихле. Для решения этой задачи получено также интегральное представление, которое является обобщением классического интеграла Пуассона. Далее основная задача сводится к решению нелокальной задачи типа Дирихле. Доказаны теоремы о существования и единственности решения исследуемой задачи. С помощью известных утверждений о решениях краевой задачи с наклонной производной для классического уравнения Лапласа найдены точные порядки гладкости решения данной задачи. Приведены также примеры невыполнения условий теоремы; при этом решение рассматриваемой задачи не единственно.

Ключевые слова: наклонная производная, нелокальная задача, уравнение Лапласа, ортогональная матрица, класс Гельдера, гладкость, существование, единственность.

УДК: 517.9

MSC: 35J25

DOI: 10.15507/2079-6900.22.202001.81-93



© МИАН, 2024