Аннотация:
Работа посвящена исследованию вопросов разрешимости нелокальной краевой задачи для уравнения Лапласа. Нелокальное условие вводится с помощью преобразований в пространстве $R^{n}$, осуществляемых некоторой ортогональной матрицей. Приведены примеры и свойства таких матриц. Для исследования основной задачи сначала решается вспомогательная нелокальная задача типа Дирихле для уравнения Лапласа. Данная задача сводится к векторному уравнению, элементами которого являются решения классической задачи Дирихле. При выполнении некоторых условий для коэффициентов в граничном условии доказаны теоремы о единственности и существовании решения задачи типа Дирихле. Для решения этой задачи получено также интегральное представление, которое является обобщением классического интеграла Пуассона. Далее основная задача сводится к решению нелокальной задачи типа Дирихле. Доказаны теоремы о существования и единственности решения исследуемой задачи. С помощью известных утверждений о решениях краевой задачи с наклонной производной для классического уравнения Лапласа найдены точные порядки гладкости решения данной задачи. Приведены также примеры невыполнения условий теоремы; при этом решение рассматриваемой задачи не единственно.