RUS  ENG
Полная версия
ЖУРНАЛЫ // Theoretical and Applied Mechanics // Архив

Theor. Appl. Mech., 2020, том 47, выпуск 2, страницы 257–287 (Mi tam89)

Эта публикация цитируется в 3 статьях

Demchenko's nonholonomic case of a gyroscopic ball rolling without sliding over a sphere after his 1923 Belgrade doctoral thesis

Vladimir Dragovićab, Borislav Gajića, Božidar Jovanovića

a Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia
b Department of Mathematical Sciences, University of Texas at Dallas, Dallas, USA

Аннотация: We present an integrable nonholonomic case of rolling without sliding of a gyroscopic ball over a sphere. This case was introduced and studied in detail by Vasilije Demchenko in his 1923 doctoral dissertation defended at the University of Belgrade, with Anton Bilimović as the advisor. These results are absolutely unknown to modern researchers. The study is based on the C. Neumann coordinates and the Voronec principle. By using the involved technique of elliptic functions, a detailed study of motion is performed. Several special classes of trajectories are distinguished, including regular and pseudo-regular precessions. The so-called remarkable trajectories, introduced by Paul Painlevé and Anton Bilimović, are described in the present case. The historical context of the results as well as their place in contemporary mechanics are outlined.

Ключевые слова: nonholonimic dynamics, rolling without sliding, C. Neumann coordinates, elliptic functions, elliptic integrals, Voronec principle, regular and pseudo-regular precessions, remarkable trajectories.

MSC: Primary 37J60, 01A60, 33E05, 01A72; Secondary 70F25, 53Z05

Поступила в редакцию: 06.11.2020
Исправленный вариант: 30.11.2020

Язык публикации: английский

DOI: 10.2298/TAM201106015D



Реферативные базы данных:


© МИАН, 2025