RUS  ENG
Полная версия
ЖУРНАЛЫ // Theoretical and Applied Mechanics // Архив

Theor. Appl. Mech., 2021, том 48, выпуск 2, страницы 127–142 (Mi tam91)

Эта публикация цитируется в 3 статьях

Noether's theorem for Herglotz type variational problems utilizing complex fractional derivatives

Marko Janeva, Teodor M. Atanackovićb, Stevan Pilipovićc

a Mathematical Institute, Serbian Academy of Sciences and Arts, Belgrade, Serbia
b Faculty of Technical Sciences, University of Novi Sad, Novi Sad, Serbia
c Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia

Аннотация: This is a review article which elaborates the results presented in [1], where the variational principle of Herglotz type with a Lagrangian that depends on fractional derivatives of both real and complex orders is formulated and the invariance of this principle under the action of a local group of symmetries is determined. The conservation law for the corresponding fractional Euler Lagrange equation is obtained and a sequence of approximations of a fractional Euler–Lagrange equation by systems of integer order equations established and analyzed.

Ключевые слова: Herglotz variational principle, Noether's theorem, fractional derivatives.

MSC: 49S05, 41A30

Поступила в редакцию: 13.09.2021
Принята в печать: 29.10.2021

Язык публикации: английский

DOI: 10.2298/TAM210913011J



Реферативные базы данных:


© МИАН, 2024