RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2008, том 14(30), выпуск 1, страницы 69–75 (Mi thsp130)

A limit theorem for symmetric Markovian random evolution in ${\mathbb R}^m$

Alexander D. Kolesnik

Institute of Mathematics and Computer Science, 5, Academy Str., MD-2028 Kishinev, Moldova

Аннотация: We consider the symmetric Markovian random evolution ${\mathbf X}(t)$ performed by a particle that moves with constant finite speed c in the Euclidean space ${\mathbb R}^m, m\geq 2(t).$ Its motion is subject to the control of a homogeneous Poisson process of rate $\lambda>0.$ We show that, under the Kac condition $c\to\infty, \lambda\to\infty, (c^2/\lambda)-\rho, \rho>0,$ the transition density of ${\mathbf X}(t)$ converges to the transition density of the homogeneous Wiener process with zero drift and the diffusion coefficient $\sigma^2=2\rho/m$.

Ключевые слова: Random motion, finite speed, random evolution, uniformly distributed directions, multidimensional Wiener process.

MSC: Primary 82C70; Secondary 82B41, 60K35, 60K37, 70L05

Язык публикации: английский



© МИАН, 2024