RUS  ENG
Полная версия
ЖУРНАЛЫ // Theory of Stochastic Processes // Архив

Theory Stoch. Process., 2016, том 21(37), выпуск 2, страницы 58–83 (Mi thsp162)

Convoluted Brownian motion: a semimartingale approach

Sylvie Rœllya, Pierre Valloisb

a Universität Potsdam, Institut für Mathematik, Karl-Liebknecht-Str. 24-25, 14476 Potsdam OT Golm, Germany
b Universitacuté de Lorraine, Institut de Mathématiques Elie Cartan, INRIA-BIGS, CNRS UMR 7502, BP 239, 54506 Vanduvre-lès-Nancy Cedex, France

Аннотация: In this paper we analyse semimartingale properties of a class of Gaussian periodic processes, called convoluted Brownian motions, obtained by convolution between a deterministic function and a Brownian motion. A classical example in this class is the periodic Ornstein-Uhlenbeck process. We compute their characteristics and show that in general, they are never Markovian nor satisfy a time-Markov field property. Nevertheless, by enlargement of filtration and/or addition of a one-dimensional component, one can in some case recover the Markovianity. We treat exhaustively the case of the bidimensional trigonometric convoluted Brownian motion and the multidimensional monomial convoluted Brownian motion.

Ключевые слова: Periodic Gaussian process, periodic Ornstein-Uhlenbeck process, Markov-field property, enlargement of filtration.

MSC: 60G10, 60G15, 60G17, 60H10, 60H20

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2024