Аннотация:
В работе получены точные по порядку оценки приближений классов $\mathbf{MB}^\Omega_{p,\theta}$ смешанной гладкости суммами Фурье в метрике $L_q$ при $1<p<q<\infty$. Спектр приближающих полиномов лежит в множествах, порожденных поверхностями уровня функции $\Omega(t)/\prod_{j=1}^dt_j^{1/p-1/q}$. При некоторых соотношениях между параметрами $p,q$ и $\theta$ получены точные по порядку оценки колмогоровских поперечников рассматриваемых классов в метрике $L_q$.