RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2017, том 23, номер 1, страницы 43–56 (Mi timm1383)

Эта публикация цитируется в 3 статьях

Свойства стабильности функции цены в задаче оптимального управления с бесконечным горизонтом

А. Л. Багноa, А. М. Тарасьевba

a Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург
b Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург

Аннотация: В статье исследуется функция цены в задаче оптимального управления на бесконечном горизонте с подынтегральным индексом, входящим в функционал качества с дисконтирующим множителем. Проведен анализ ее свойств для случая, когда функционал платы управляемой системы содержит индекс качества, который представлен неограниченной функцией. Дана верхняя оценка роста функции цены. Получены необходимые и достаточные условия, при которых функция цены обладает свойствами стабильности в инфинитезимальной форме. Рассмотрен вопрос о совпадении функции цены собобщенным минимаксным решением уравнения Гамильтона - Якоби - Беллмана - Айзекса. Показана единственность соответствующего минимаксного решения. Дано описание асимптотики роста функции цены для функционалов качества логарифмического, степенного и экспоненциального видов, встречающихся в экономическом и финансовом моделировании. Полученные результаты могут быть использованы для построения сеточных методов апроксимации функции цены как обобщенного минимаксного решения уравнения Гамильтона-Якоби-Беллмана-Айзекса. Эти методы являются эффективными средствами в моделировании процессов экономического роста.

Ключевые слова: оптимальное управление, уравнение Гамильтона - Якоби, минимаксное решение, бесконечный горизонт, функция цены, свойства стабильности.

УДК: 517.977

MSC: 49K15, 49L25

Поступила в редакцию: 01.11.2016

DOI: 10.21538/0134-4889-2017-23-1-43-56


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, 301, suppl. 1, 1–14

Реферативные базы данных:


© МИАН, 2025