Аннотация:
Предлагается распространение теоремы Надлера о неподвижной точке многозначного отображения на пространства с векторнозначной метрикой. Под векторнозначной метрикой понимается отображение, обладающее свойствами “обычной” метрики, значениями которого являются элементы линейного нормированного упорядоченного пространства. Доказанный аналог теоремы Надлера применяется к системе интегральных включений в пространстве суммируемых функций. Затем с помощью редукции к системе интегральных включений исследуется краевая задача с многозначными условиями для систем функционально-дифференциальных включений. Получены условия (не содержащие требования выпуклости значений многозначной функции, порождающей оператор Немыцкого) существования решений и даны оценки решений.