Аннотация:
Исследуется трехмерное множество достижимости “в момент” для нелинейной управляемой системы, которую часто называют машиной Дубинса. Управляемый объект движется на плоскости с постоянной линейной скоростью и ограниченным радиусом поворота. Случай, когда повороты возможны в обе стороны, рассматривался ранее. В данной работе изучается случай, когда поворот возможен только в одну сторону. Если ограничение на управление допускает движение по прямой, то доказано утверждение о том, что в любую точку на границе множества достижимости ведет кусочно-постоянное управление, количество переключений которого не больше двух. Кроме того, двумерные сечения множества достижимости по угловой координате являются выпуклыми. Если движение по прямой исключено в силу заданных ограничений на управление (в каждый текущий момент объект находится в состоянии поворота, при помощи управления выбирается в оговоренных пределах радиус поворота), то количество переключений кусочно-постоянного управления, ведущего на границу множества достижимости в момент, растет с увеличением момента времени, для которого строится множество достижимости. Подробно рассматривается случай, когда такой момент не больше времени поворота на угол $2\pi$ с наименьшим возможным радиусом. Здесь любое кусочно-постоянное управление, ведущее на границу, имеет не более двух переключений и сечения множества достижимости по угловой координате являются строго выпуклыми.
Ключевые слова:
машина Дубинса, односторонний поворот, трехмерное множество достижимости, принцип максимума Понтрягина, кусочно-постоянные управления, выпуклость сечений множества достижимости.