RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2018, том 24, номер 1, страницы 143–155 (Mi timm1503)

Эта публикация цитируется в 6 статьях

Множество достижимости в момент для машины Дубинса в случае одностороннего поворота

В. С. Пацкоab, А. А. Федотовa

a Институт математики и механики им. Н. Н. Красовского Уральского отделения РАН, г. Екатеринбург
b Уральский федеральный университет им. первого Президента России Б. Н. Ельцина, г. Екатеринбург

Аннотация: Исследуется трехмерное множество достижимости “в момент” для нелинейной управляемой системы, которую часто называют машиной Дубинса. Управляемый объект движется на плоскости с постоянной линейной скоростью и ограниченным радиусом поворота. Случай, когда повороты возможны в обе стороны, рассматривался ранее. В данной работе изучается случай, когда поворот возможен только в одну сторону. Если ограничение на управление допускает движение по прямой, то доказано утверждение о том, что в любую точку на границе множества достижимости ведет кусочно-постоянное управление, количество переключений которого не больше двух. Кроме того, двумерные сечения множества достижимости по угловой координате являются выпуклыми. Если движение по прямой исключено в силу заданных ограничений на управление (в каждый текущий момент объект находится в состоянии поворота, при помощи управления выбирается в оговоренных пределах радиус поворота), то количество переключений кусочно-постоянного управления, ведущего на границу множества достижимости в момент, растет с увеличением момента времени, для которого строится множество достижимости. Подробно рассматривается случай, когда такой момент не больше времени поворота на угол $2\pi$ с наименьшим возможным радиусом. Здесь любое кусочно-постоянное управление, ведущее на границу, имеет не более двух переключений и сечения множества достижимости по угловой координате являются строго выпуклыми.

Ключевые слова: машина Дубинса, односторонний поворот, трехмерное множество достижимости, принцип максимума Понтрягина, кусочно-постоянные управления, выпуклость сечений множества достижимости.

УДК: 517.977

MSC: 93C15, 93B03, 49J15

Поступила в редакцию: 31.01.2018

DOI: 10.21538/0134-4889-2018-24-1-143-155



Реферативные базы данных:


© МИАН, 2025