RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2018, том 24, номер 3, страницы 43–50 (Mi timm1549)

Эквивалентность существования несопряженных и неизоморфных холловых $\pi$-подгрупп

Го Вень Биньa, А. А. Бутурлакинbc, Д. О. Ревинbca

a School of Mathematical Sciences, University of Science and Technology of China
b Институт математики им. С.Л. Соболева Сибирского отделения Российской академии наук, г. Новосибирск
c Новосибирский национальный исследовательский государственный университет

Аннотация: Пусть $\pi$ - некоторое множество простых чисел. Подгруппа $H$ конечной группы $G$ называется холловой $\pi$-подгруппой, если любой простой делитель порядка $|H|$ подгруппы $H$ принадлежит $\pi$, а индекс $|G:H|$ не делится на числа из $\pi$. Знаменитая теорема Холла утверждает, что разрешимая конечная группа всегда содержит холлову $\pi$-подгруппу, и любые две холловы $\pi$-подгруппы в такой группе сопряжены. Справедливо обращение теоремы Холла: для любой неразрешимой группы $G$ можно указать множество $\pi$ такое, что $G$ не содержит холловых $\pi$-подгрупп. Тем не менее, холловы $\pi$-подгруппы могут существовать и в неразрешимой группе. Известны примеры множеств $\pi$ таких, что в любой конечной группе, содержащей холлову $\pi$-подгруппу, все холловы $\pi$-подгруппы сопряжены (и, как следствие, изоморфны). Так в 1987 г. Ф. Гросс показал, что этим свойством обладает любое множество $\pi$ нечетных простых чисел. Наряду с этим, в неразрешимых группах для некоторых $\pi$ холловы $\pi$-подгруппы могут быть несопряженными, но изоморфными (скажем, в $PSL_2(7)$ для $\pi=\{2,3\}$), и даже неизоморфными (в $PSL_2(11)$ для $\pi=\{2,3\}$). В работе доказано, что для множества $\pi$ существование конечной группы с несопряженными холловыми $\pi$-подгруппами влечет существование группы с неизоморфными холловыми $\pi$-подгруппами. Обратное утверждение очевидно.

Ключевые слова: холлова $\pi$-подгруппа, свойство $\mathscr {C}_\pi$, сопряженные подгруппы.

УДК: 512.542

MSC: 20D20

Поступила в редакцию: 07.05.2018

DOI: 10.21538/0134-4889-2018-24-3-43-50


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics (Supplementary issues), 2018, 303, suppl. 1, 94–99

Реферативные базы данных:


© МИАН, 2024