Аннотация:
В дополнение к ранее опубликованным совместным работам авторов, применявших ортогональные всплески для представления решения задач Дирихле с оператором Лапласа и его степенями в круге и кольце, а интерполяционные всплески - только в круге, в настоящей статье развита техника применения интерполяционных периодических всплесков в кольце для краевой задачи Дирихле. Причем упор сделан не на проблеме точного представления решения в виде рядов (двойных) по системе всплесков, а на приближении решений с любой наперед заданной точностью конечными построенными с помощью интерполяционных всплесков линейными комбинациями двоично-рациональных сдвижек специальных гармонических полиномов. Полученные приближенные формулы просты для численной реализации, особенно если квадрат преобразования Фурье мейеровской масштабирующей функции с описанными в работе свойствами можно явно определить через подходящие элементарные функции.
Ключевые слова:интерполяционные всплески, кратномасштабный анализ (КМА), задача Дирихле, оператор Лапласа, наилучшее приближение, модуль непрерывности.