Аннотация:
В статье приводится определение ступенчато-аффинных функций, определенных на вещественном векторном пространстве, и устанавливается их двойственность полупространствам — выпуклым множествам, дополнения которых также выпуклы. С использованием этой двойственности доказывается, что два выпуклых подмножества вещественного векторного пространства не пересекаются тогда и только тогда, когда они отделимы некоторой ступенчато-аффинной функцией. Фактически данный критерий непересекаемости выпуклых множеств является аналитическим вариантом критерия Какутани — Тьюки об отделимости непересекающихся выпуклых множеств полупространствами. В качестве приложений получены критерий минимальности решений для выпуклых задач векторной оптимизации, рассматриваемых в вещественных векторных пространствах без топологии, и критерий оптимальности допустимых точек в классических задачах выпуклого программирования, не удовлетворяющих условию регулярности Слейтера.