RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Института математики и механики УрО РАН // Архив

Тр. ИММ УрО РАН, 2022, том 28, номер 2, страницы 258–268 (Mi timm1919)

On a class of vertex-primitive arc-transitive amply regular graphs

[О классе вершинно-примитивных транзитивных на дугах вполне регулярных графов]

M. P. Golubyatnikovab, N. V. Maslovaab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Ural Federal University named after the First President of Russia B. N. Yeltsin, Ekaterinburg

Аннотация: Обыкновенный $k$-регулярный граф с $v$ вершинами называется вполне регулярным с параметрами $(v, k, \lambda, \mu)$, если любые две смежные вершины имеют точно $\lambda$ общих соседей, а любые вершины, находящиеся на расстоянии $2$ в этом графе, имеют точно $\mu$ общих соседей. Пусть $G$ — конечная группа, $H \le G$, ${\mathfrak{H}} = \{H^g \,|\, g \in G \}$ — соответствующий класс сопряженности подгрупп группы $G$ и $1\le d $ — целое число. Построим обыкновенный граф $\Gamma(G, H, d)$ следующим образом$\rm{:}$ вершинами графа $\Gamma(G, H, d)$ являются элементы класса ${\mathfrak{H}}$, и две различные вершины $H_1$ и $H_2$ из ${\mathfrak{H}}$ смежны в $\Gamma(G, H, d)$ тогда и только тогда, когда $|H_1 \cap H_2| = d$. В данной работе мы доказываем, если $q$ — степень простого числа такая, что $13 \le q \equiv 1 \pmod{4}$, $G=SL_2(q)$ и $H$ — диэдральная максимальная подгруппа группы $G$ порядка $2(q-1)$, то граф $\Gamma=\Gamma(G, H, 8)$ является вершинно примитивным транзитивным на дугах вполне регулярным графом с параметрами $\left(\dfrac{q(q+1)}{2}, \dfrac{q-1}{2}, 1, 1\right)$, при этом ${\rm Aut}(PSL_2(q)) \le {\rm Aut}(\Gamma)$. Более того, мы показываем, что $\Gamma=\Gamma(G, H, 8)$ содержит совершенный $1$-код, в частности, диаметр этого графа больше $2$.

Ключевые слова: конечная простая группа; транзитивный на дугах граф; вполне регулярный граф; реберно регулярный граф; граф обхвата 3; граф Деза; совершенный 1-код.

УДК: 512.542+519.177

MSC: 05C25, 20D06

Поступила в редакцию: 11.03.2022
Исправленный вариант: 06.05.2022
Принята в печать: 11.05.2022

Язык публикации: английский

DOI: 10.21538/0134-4889-2022-28-2-258-268



Реферативные базы данных:


© МИАН, 2024