Аннотация:
В данной работе представлена программа для проведен ия экспериментов в области process mining и тестирования алгоритмов починки моделей. Исследователи в области Process mining разрабатывают и применяют алгоритмы и подходы для извлечения и анализа бизнес процессов, которые основаны на анализе логов событий. Выделяют три основных области в рамках process mining: извлечение процессов, проверка соответствия моделей и логов событий и усовершенствование моделей. В данной статье рассматривается один из способов усовершенствования моделей, называемый починкой моделей процессов. Починка модели процесса необходима в случаях недостаточного соответствия существующей модели заданным логам событий реального процесса. Предполагается, что логи событий отражает правильное и актуальное поведение бизнес-процессов, в то время как модели процесса могут быть ошибочными. В статье рассматривается реализация модульного подхода для починки моделей. Предлагаемый подход предполагает реализацию программы, состоящей из нескольких независимых модулей, реализующих различные этапы процесса починки модели процесса. Подобная архитектура позволяет добиться более гибкой конфигурации починки, а также обеспечивает возможность проведения экспериментов по выбору алгоритмов, применяющихся в каком-либо модуле, в изоляции от других модулей. Несмотря на то, что основной целью статьи было описание особенностей реализации программы, теоретические основы модульной починки моделей процессов рассмотрены на уровне, достаточном для понимания по дхода. Более того, рассмотрены сценарии использования программы и описаны способы её расширения дополнительными алгоритмами и функционалом. Приведен обзор существующих модульных решений, которые могут быть использованы для усовершенствования моделей процессов, обсуждены их достоинства и недостатки.
Ключевые слова:Process model, Petri net, Model repair, Process mining.