RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды института системного программирования РАН // Архив

Труды ИСП РАН, 2019, том 31, выпуск 3, страницы 99–122 (Mi tisp426)

Reputation systems in e-commerce: comparative analysis and perspectives to model uncertainty inherent in them

[Репутационные системы в электронной коммерции: Сравнительный анализ и перспективы моделирования присущей им нечеткости]

M. M. Nosovskiy, K. Y. Degtiarev

National Research University Higher School of Economics

Аннотация: В наши дни электронная коммерция (ЭК) показывает беспрецедентные темпы роста во всем мире, вовлекая в эту деятельность миллионы людей на всех континентах. В то же время, ЭК создает почву для злонамеренных действий, что требует особого внимания и контроля. Одним из способов минимизации таких угроз является использование репутационных систем для отслеживания степени доверия в среде пользователей сети. Большинство существующих репутационных систем основаны на сборе отзывов относительно проведенных транзакций, и они, как правило, работают с представленными в виде чисел откликами клиентов (в частности, может использоваться привычная целочисленная шкала 0..5). В целом, понятия доверия и репутации являются примерами неопределенных (неточных) информационных данных, характерных для сферы электронной коммерции. Мы предлагаем использовать аппарат нечеткой логики для формального представления пользовательских отзывов, выражающих степень удовлетворенности результатом совершенных транзакций. В работе представлен краткий сравнительный анализ наиболее известных репутационных систем, таких как EigenTrust, HonestPeer, Absolute Trust, PowerTrust и PeerTrust. С учетом выделенных в результате анализа критериев (скорость сходимости, устойчивость (робастность), наличие гиперпараметров), проведенная серия компьютерных экспериментов позволила эмпирически выделить PeerTrust как наиболее устойчивый и масштабируемый алгоритм из числа рассмотренных. При наличии ограничений в отношении имеющихся данных, подготовлены реализации (Python 3.7) и проанализированы результаты, связанные с особенностями поведения нечетких версий алгоритма PeerTrust на основе нечетких множеств типа-1 (T1FS) и интервальных нечетких множеств второго типа (IT2FS).

Ключевые слова: электронная коммерция, репутационная система, пиринговые вычисления, управление доверием, нечеткость, нечеткая логика, лингвистическая переменная, нечеткое множество 1-го типа, нечеткое множество 2-го типа.

Язык публикации: английский

DOI: 10.15514/ISPRAS-2019-31(3)-9



Реферативные базы данных:


© МИАН, 2024