Аннотация:
Работа посвящена повышению качества результатов сегментации изображений документов различных научных статей и нормативно-правовых актов нейросетевыми моделями путём обучения с использованием модифицированных функций потерь, учитывающих особенности изображений выбранной предметной области. Проводится анализ существующих функций потерь, а также разработка новых функций, оперирующих, как только координатами ограничивающих прямоугольников, так и использующих информацию о пикселях входного изображения. Для оценки качества выполняется обучение нейросетевой модели сегментации с модифицированными функциями потерь, а также проводится теоретическая оценка с помощью симуляционного эксперимента, показывающего скорость сходимости и ошибку сегментации. В результате исследования созданы быстро сходящиеся функции потерь, улучшающие качество сегментации изображений документов с использованием дополнительной информации о входных данных.
Ключевые слова:сегментация изображений документов, функции потерь, модификация функции потерь