RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 1997, том 216, страницы 292–319 (Mi tm1013)

Эта публикация цитируется в 67 статьях

Differential rigidity of Anosov actions of higher rank abelian groups and algebraic lattice actions

A. Katok, R. J. Spatzier


Аннотация: We show that most homogeneous Anosov actions of higher rank Abelian groups are locally $C^\infty$-rigid (up to an automorphism). This result is the main part in the proof of local $C^\infty$-rigidity for two very different types of algebraic actions of irreducible lattices in higher rank semisimple Lie groups: (i) the Anosov actions by automorphisms of tori and nilmanifolds, and (ii) the actions of cocompact lattices on Furstenberg boundaries, in particular, projective spaces. The main new technical ingredient in the proofs is the use of a proper “onstationary” generalization of the classical theory of normal forms for local contractions.

УДК: 517.9

Поступило в феврале 1997 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 1997, 216, 287–314

Реферативные базы данных:


© МИАН, 2024