RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2004, том 247, страницы 267–279 (Mi tm24)

Extended Hyperbolic Surfaces in $R^3$

D. W. Henderson

Cornell University

Аннотация: In this paper, I will describe the construction of several surfaces whose intrinsic geometry is hyperbolic geometry, in the same sense that spherical geometry is the geometry of the standard sphere in Euclidean 3-space. I will prove that the intrinsic geometry of these surfaces is, in fact, (a close approximation of) hyperbolic geometry. I will share how I (and others) have used these surfaces to increase our own (and our students') experiential understanding of hyperbolic geometry. (How to find hyperbolic geodesics? What are horocycles? Does a hyperbolic plane have a radius? Where does the area formula $\pi r^2$ fit in hyperbolic geometry?).

УДК: 514.132

Поступило в августе 2003 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2004, 247, 246–258

Реферативные базы данных:


© МИАН, 2024