Аннотация:
Пусть $f$ – сохраняющий ориентацию диффеоморфизм Морса–Смейла $n$-мерного ($n\ge3$) замкнутого ориентируемого многообразия $M^n$. В работе устанавливается возможность представления динамики $f$ в виде “источник–сток”, где роль “источника” и “стока” играют инвариантные замкнутые множества, одно из которых $A_f$ является аттрактором, а другое $R_f$ – репеллером. Такое представление приводит к обнаружению новых топологических инвариантов, описывающих вложение (возможно, дикое) устойчивых и неустойчивых многообразий седловых периодических точек в несущее многообразие. Эти инварианты позволили получить классификацию содержательных классов диффеоморфизмов Морса–Смейла на 3-многообразиях. В настоящей работе для любого $n\ge3$ описывается топологическая структура множеств $A_f$, $R_f$ и пространства орбит, принадлежащих множеству $M^n\setminus(A_f\cup R_f)$.