RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2012, том 276, страницы 227–232 (Mi tm3363)

Are there arbitrarily long arithmetic progressions in the sequence of twin primes? II

János Pintz

Alfréd Rényi Institute of Mathematics, Hungary Academy of Sciences, Budapest, Hungary

Аннотация: In an earlier work it was shown that the Elliott–Halberstam conjecture implies the existence of infinitely many gaps of size at most $16$ between consecutive primes. In the present work we show that assuming similar conditions not just for the primes but for functions involving both the primes and the Liouville function, we can assure not only the infinitude of twin primes but also the existence of arbitrarily long arithmetic progressions in the sequence of twin primes. An interesting new feature of the work is that the needed admissible distribution level for these functions is just $3/4$ in contrast to the Elliott–Halberstam conjecture.

УДК: 511.337

Поступило в октябре 2011 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2012, 276, 222–227

Реферативные базы данных:


© МИАН, 2024