Аннотация:
Настоящая работа является развитием идей предыдущих работ авторов, посвященных вопросу существования энергетической функции у градиентно-подобных диффеоморфизмов $3$-многообразий. Для произвольного диффеоморфизма Морса–Смейла трехмерного многообразия вводится понятие динамически упорядоченной функции Морса–Ляпунова, свойства которой тесно связаны с динамикой диффеоморфизма. Устанавливается, что необходимые и достаточные условия существования энергетической функции с такими свойствами определяются типом вложения одномерных аттракторов (репеллеров), каждый из которых является объединением нульмерных и одномерных неустойчивых (устойчивых) многообразий периодических орбит диффеоморфизма.