Эта публикация цитируется в
6 статьях
Rigidity and stability of the Leibniz and the chain rule
Hermann Königa,
Vitali Milmanb a Mathematisches Seminar, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
b School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel
Аннотация:
We study rigidity and stability properties of the Leibniz and chain rule operator equations. We describe which non-degenerate operators $V,T_1,T_2,A\colon C^k(\mathbb R)\to C(\mathbb R)$ satisfy equations of the generalized Leibniz and chain rule type for
$f,g\in C^k(\mathbb R)$, namely,
$V(f\cdot g)=(T_1f)\cdot g+f\cdot(T_2g)$ for
$k=1$, $V(f\cdot g)=(T_1f)\cdot g+f\cdot(T_2g)+(Af)\cdot(Ag)$ for
$k=2$, and
$V(f\circ g)=(T_1f)\circ g\cdot(T_2g)$ for
$k=1$. Moreover, for multiplicative maps
$A$, we consider a more general version of the first equation,
$V(f\cdot g)=(T_1f)\cdot(Ag)+(Af)\cdot(T_2g)$ for
$k=1$. In all these cases, we completely determine all solutions. It turns out that, in any of the equations, the operators
$V$,
$T_1$ and
$T_2$ must be essentially equal. We also consider perturbations of the chain and the Leibniz rule,
$T(f\circ g)=Tf\circ g\cdot Tg+B(f\circ g,g)$ and
$T(f\cdot g)=Tf\cdot g+f\cdot Tg+B(f,g)$, and show under suitable conditions on
$B$ in the first case that
$B=0$ and in the second case that the solution is a perturbation of the solution of the standard Leibniz rule equation.
УДК:
517.98 Поступило в январе 2012 г.
Язык публикации: английский
DOI:
10.1134/S0371968513010135