RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2013, том 282, страницы 135–153 (Mi tm3492)

Эта публикация цитируется в 19 статьях

Weighted moments of the limit of a branching process in a random environment

Xingang Liangab, Quansheng Liuca

a Laboratoire de Mathématiques de Bretagne Atlantique, UMR 6205, Université de Bretagne-Sud, Vannes, France
b School of Science, Beijing Technology and Business University, Beijing, China
c School of Mathematics and Computing Sciences, Changsha University of Science and Technology, Changsha, China

Аннотация: Let $(Z_n)$ be a supercritical branching process in an independent and identically distributed random environment $\zeta=(\zeta_0,\zeta_1,\ldots)$, and let $W$ be the limit of the normalized population size $Z_n/\mathbb E(Z_n|\zeta)$. We show a necessary and sufficient condition for the existence of weighted moments of $W$ of the form $\mathbb E\,W^\alpha\ell(W)$, where $\alpha\geq1$ and $\ell$ is a positive function slowly varying at $\infty$.

УДК: 519.218.27

Поступило в ноябре 2012 г.

Язык публикации: английский

DOI: 10.1134/S0371968513030126


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2013, 282, 127–145

Реферативные базы данных:


© МИАН, 2024