Аннотация:
Рассматривается задача выделения из тригонометрических многочленов $T_n(t)=\sum _{k=1}^n\tau _k(t)$, $\tau _k(t):=a_k\cos kt+b_k\sin kt$, суммы гармоник $\sum \tau _{\mu _s}(t)$ заданных порядков $\mu _s$ методом амплитудно-фазовых преобразований. Такие преобразования переводят многочлены $T_n(t)$ в подобные им с помощью двух простейших операций — умножения на вещественную константу $X$ и сдвига на вещественную фазу $\lambda $, т.е. $T_n(t)\mapsto XT_n(t-\lambda )$. Сумма гармоник представляется в виде суммы подобных многочленов. Представление применяется для точных оценок типа Фейера.
УДК:517.53
Поступило в редакцию:29 марта 2019 г. После доработки:10 июля 2019 г. Принята к печати:25 декабря 2019 г.