RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2023, том 321, страницы 94–107 (Mi tm4317)

Об индексе градиента вещественного обратимого многочлена

Г. Гиоргадзеa, Г. Химшиашвилиb

a Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
b Ilia State University, Tbilisi, Georgia

Аннотация: Приводятся несколько наблюдений, касающихся так называемых обратимых многочленов, введенных и изученных в серии статей по математической физике и теории особенностей. В частности, рассмотрены вещественные версии обратимых многочленов и исследованы инварианты связанных с ними изолированных особенностей гиперповерхностей. По определению такой многочлен является взвешенно однородным и его градиентное векторное поле $\operatorname {grad}f$ имеет изолированный нуль в начале координат; следовательно, корректно определен его индекс $\operatorname {ind}_0\operatorname {grad}f$. Этот индекс, называемый индексом градиента многочлена, является главным объектом исследования в работе. В частности, дана эффективная оценка модуля индекса градиента $\operatorname {ind}_0\operatorname {grad}f$ через взвешенно однородный тип многочлена $f$ и исследована ее точность. Для вещественных обратимых многочленов от двух и трех переменных найдено полное множество возможных значений индекса градиента. В качестве приложения в случае трех переменных приведен полный список возможных топологических типов слоев Милнора вещественных обратимых многочленов, обобщающий недавние результаты Л. Андерсена по топологии изолированных вещественных особенностей гиперповерхностей. В заключение представлены несколько открытых проблем и гипотез, возникших в ходе работы.

Ключевые слова: взвешенно однородный многочлен, обратимый многочлен, изолированная особенность гиперповерхности, градиентное векторное поле, степень отображения, алгебра модулей, сигнатура квадратичной формы, слой Милнора, линк особенности, эйлерова характеристика.

УДК: 515.16+512.717

Поступило в редакцию: 19 февраля 2022 г.
После доработки: 1 июля 2022 г.
Принята к печати: 9 января 2023 г.

DOI: 10.4213/tm4317


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2023, 321, 84–96

Реферативные базы данных:


© МИАН, 2024