RUS  ENG
Полная версия
ЖУРНАЛЫ // Труды Математического института имени В. А. Стеклова // Архив

Труды МИАН, 2007, том 256, страницы 290–304 (Mi tm468)

Эта публикация цитируется в 2 статьях

A Dynamical Approach to Accelerating Numerical Integration with Equidistributed Points

O. Jenkinsona, M. Pollicottb

a School of Mathematical Sciences, Queen Mary, University of London
b University of Warwick

Аннотация: We show how ideas originating in the theory of dynamical systems inspire a new approach to numerical integration of functions. Any Lebesgue integral can be approximated by a sequence of integrals with respect to equidistributions, i.e. evenly weighted discrete probability measures concentrated on an equidistributed set. We prove that, in the case where the integrand is real analytic, suitable linear combinations of these equidistributions lead to a significant acceleration in the rate of convergence of the approximate integral. In particular, the rate of convergence is faster than that of any Newton–Cotes rule.

УДК: 519.6

Поступило в октябре 2006 г.

Язык публикации: английский


 Англоязычная версия: Proceedings of the Steklov Institute of Mathematics, 2007, 256, 275–289

Реферативные базы данных:


© МИАН, 2024