Аннотация:
Рассматривается гамильтонова система с двумя степенями свободы, одна из которых соответствует быстрому движению, а другая – медленному. Отношение характерных скоростей изменения медленных и быстрых переменных является малым параметром $\varepsilon$ задачи. Предполагается, что при замороженных значениях медленных переменных на фазовой плоскости быстрых переменных имеется сепаратриса. В фазовом пространстве есть область (область переходов через сепаратрису) такая, что проекции фазовых точек этой области на плоскость быстрых переменных в ходе изменения медленных переменных многократно пересекают сепаратрису. При выполнении определенного условия симметрии показано, что в области переходов через сепаратрису на каждом уровне энергии есть много (порядка $1/\varepsilon$) устойчивых периодических траекторий системы. Каждая из этих траекторий окружена островом устойчивости, мера которого оценивается снизу величиной порядка $\varepsilon$, так что суммарная мера островов устойчивости оценивается снизу величиной, не зависящей от $\varepsilon$. Доказательство основано на исследовании асимптотических формул для соответствующего отображения последования Пуанкаре.