Аннотация:
Рассмотрены 3-диффеоморфизмы Морса–Смейла, неблуждающее множество которых состоит в точности из четырех неподвижных точек с попарно различными индексами Морса. На сегодняшний день открытым является вопрос о том, какие замкнутые 3-многообразия допускают такие диффеоморфизмы. Известно, что множество этих многообразий содержит все линзовые пространства. Более того, на всех многообразиях, кроме $\mathbb{S}^2\times\mathbb{S}^1$, рассматриваемые диффеоморфизмы имеют гетероклинические кривые. Установлено, что число гетероклинических кривых диффеоморфизма на заданном многообразии можно минимизировать, сведя его к конечному числу некомпактных гетероклинических кривых, являющихся ориентируемым пересечением инвариантных седловых многообразий. Полученный результат позволит в дальнейшем дать исчерпывающее описание замкнутых 3-многообразий, допускающих рассматриваемые диффеоморфизмы.