Аннотация:
Предложен подход, сводящий решение уравнения Шредингера для ряда широко используемых степенных потенциалов к решению задачи на собственные значения для бесконечной системы алгебраических уравнений. Построенный алгоритм удобен как для аналитических вычислений, так и для численного расчета. На основе разработанного метода вычислены спектры масс “чармония” и “боттомония” для “корнельского” потенциала и суммы кулоновского и осцилляторного потенциалов. Используемый подход позволяет находить спектр масс релятивистских уравнений типа уравнения Шредингера. Получено хорошее согласие с экспериментальными данными.