RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2003, том 134, номер 1, страницы 55–73 (Mi tmf140)

Эта публикация цитируется в 4 статьях

Квантовые интегрируемые и неинтегрируемые модели, основанные на нелинейном уравнении Шредингера, для реализуемой конденсации Бозе–Эйнштейна в размерности $d+1$ $(d=1,2,3)$

Р. К. Буллоуa, Н. М. Боголюбовb, В. С. Капитоновc, К. Л. Малышевb, Й. Тимоненd, А. В. Рыбинd, Г. Г. Варзугинe, М. Линдбергf

a University of Manchester, Department of Mathematics
b Санкт-Петербургское отделение Математического института им. В. А. Стеклова РАН
c Санкт-Петербургский государственный технологический институт (технический университет)
d University of Jyväskylä
e Научно-исследовательский институт физики им. В. А. Фока Санкт-Петербургского государственного университета
f Åbo Akademi University

Аннотация: Вычислены корреляторы $\langle T_\tau \hat{\psi}({\mathbf r}_1) \hat{\psi}^\dagger({\mathbf r}_2)\rangle$ в модели квантового нелинейного уравнения Шрёдингера (НШ) при конечной температуре для упорядоченных по тепловому времени $\tau$ бозе-полей $\hat{\psi}$, $\hat{\psi}^\dagger$ с хорошим приближением. Использовались новые методы функционального интегрирования в размерностях $d=1,2,3$ для потенциалов ловушки $V({\mathbf r})\not\equiv0$. Как и при наличии трансляционной инвариантности, коррелятор асимптотически убывает пропорционально $R^{-1}\equiv|{\mathbf r}_1-{\mathbf r}_2|^{-1}$ к значениям конденсата с большим дальнодействием, что находится в согласии с экспериментальными наблюдениями только в случае $d=3$; вообще говоря, имеются существенные поправки, определяемые присутствием ловушек и зависящие от ${\mathbf S}\equiv({\mathbf r}_1+{\mathbf r}_2)/2$. При $d=1$ воспроизведены точные трансляционно-инвариантные результаты при частотах ловушки $\Omega\rightarrow0$. В случае с притяжением изучается временная зависимость $c$-числового уравнения Гросса–Питаевского (ГП) с ловушечным потенциалом для обобщенной нелинейности вида $-2c\psi|\psi|^{2n}$ при $c<0$. При $n=1$ стационарная форма уравнения ГП возникает в приближении метода перевала в функциональных интегралах. Показано, что коллапс в смысле Захарова может иметь место, когда $c<0$, $nd\geqslant2$ и функционал $E_{\textup{НШ}}[\psi]\leqslant 0$, даже если $V({\mathbf r})\not\equiv0$. Сингулярности, как правило, возникают в виде $\delta$-функций с центром в середине ловушки ${\mathbf r}={\mathbf 0}$.

Ключевые слова: конденсация Бозе–Эйнштейна, метод функционального интеграла, квантовая модель нелинейного уравнения Шредингера, теория при конечной температуре, магнитные ловушки, двухточечные корреляции, функции когерентности.

DOI: 10.4213/tmf140


 Англоязычная версия: Theoretical and Mathematical Physics, 2003, 134:1, 47–61

Реферативные базы данных:


© МИАН, 2024