Аннотация:
На основе принципа Джейнса максимума информационной энтропии найдено обобщенное вероятностное распределение и построена обобщенная равновесная статистическая механика (РСМ) для широкого класса объектов, к которым не применима обычная
(каноническая) РСМ. Последовательно рассмотрен случай не дискретной, а непрерывной случайной переменной, характеризующей состояние объекта. Найденное распределение при больших значениях аргумента обладает не экспоненциальной, а степенной асимптотикой, которая соответствует эмпирически установленным закономерностям для
подобных объектов. В качестве исходного энтропийного функционала использован $\varepsilon$-деформированный функционал Больцмана–Гиббса–Шеннона, удовлетворяющий требованиям энтропийной аксиоматики и при $\varepsilon=0$ приводящий к канонической РСМ; рассмотрены также нелинейные преобразования этого функционала. Показано, что в зависимости от способа определения средних значений
динамических величин, характеризующих объект, при $\varepsilon\neq0$ возможны различные варианты обобщенной РСМ (Цаллиса, Реньи, Харди–Литлвуда–Пойа) и дан их сравнительный анализ. Найдены условия выполнения термодинамических соотношений Гиббса–Гельмгольца и преобразования Лежандра для обобщенной энтропии и функции Масье–Планка. Подробно рассмотрены варианты РСМ по Цаллису и Реньи для случая одномерного вероятностного объекта с одной динамической величиной – обобщенной
положительной “энергией”, монотонно растущей по степенному закону. Получены ограничения на показатель Реньи, при которых равновесное распределение относится к определенному классу устойчивых распределений – Гаусса или Леви–Хинчина.