RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 1976, том 27, номер 1, страницы 81–93 (Mi tmf3306)

Эта публикация цитируется в 6 статьях

Связанные состояния вблизи границы нижнего континуума (бозонный случай)

В. Д. Мур, В. С. Попов


Аннотация: Известное в нерелятивистской теории рассеяния приближение “эффективного радиуса взаимодействия” обобщается на случай скалярных частиц, подчиняющихся уравнению Клейна–Гордона. Получены точные формулы, выражающие параметры разложения $S$-матрицы и энергию уровней вблизи границы нижнего континуума через волновую функцию в момент возникновения связанного состояния для античастиц (т.е. при $\varepsilon=-mc^2$). С помощью этих формул исследуется движение уровней вблизи границы $\varepsilon=-mc^2$ для различных значений момента $l$. Обнаружена возможность “загиба” кривой $p$-уровня для потенциалов с резким краем, известная ранее лишь для $s$-уровней. Рассмотрен ряд точно решаемых примеров. В частности, подробно исследуются точное решение уравнения Клейна–Гордона для $s$-уровней в потенциале Хюльтена и предельный переход к неэкранированному кулоновскому потенциалу.

Поступило в редакцию: 10.04.1975


 Англоязычная версия: Theoretical and Mathematical Physics, 1976, 27:1, 346–354


© МИАН, 2024