RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2001, том 129, номер 2, страницы 258–277 (Mi tmf535)

Эта публикация цитируется в 13 статьях

Интегрируемые многочастичные системы, полученные с использованием предела Иноземцева

А. В. Зотовab, Ю. Б. Черняковa

a Институт теоретической и экспериментальной физики им. А. И. Алиханова
b Московский физико-технический институт (государственный университет)

Аннотация: Предел Иноземцева (ПИ), или скейлинговый предел, известен как процедура, применяемая к эллиптической модели Калоджеро–Мозера. Она является комбинацией тригонометрического предела, бесконечного сдвига координат частиц и перенормировки констант связи. В результате этой процедуры получается экспоненциальный тип взаимодействия. Показано, что ПИ, примененный к эллиптической $sl(N,\mathbb C)$-модели Эйлера–Калоджеро–Мозера и эллиптической модели Годена, приводит к новым, похожим на цепочки Тоды, системам из $N$ взаимодействующих частиц с дополнительными степенями свободы, которые соответствуют орбите коприсоединенного действия в $sl(n,\mathbb C)$. Пределы, соответствующие полному вырождению этих орбитных степеней свободы, воспроизводят только уже известные периодические и открытые цепочки Тоды. Дана классификация систем, возникающих в ПИ для случая $sl(3,\mathbb C)$. Эта классификация представлена на двумерной плоскости параметров, задающих бесконечные сдвиги координат частиц. Пространство разбивается на симметричные области. Комбинация потенциалов Тоды и тригонометрического потенциала Калоджеро–Сазерленда появляется в этой картинке на плоскости параметров на стенках меньших размерностей. Вследствие очевидных симметрий классификация может быть обобщена на случай произвольного числа частиц. ПИ применяется также к $sl(2,\mathbb C)$-эллиптической модели Годена с двумя проколотыми точками на эллиптической кривой, обсуждаются основные свойства возможных в этом случае пределов. Также рассмотрены пределы матриц Лакса.

DOI: 10.4213/tmf535


 Англоязычная версия: Theoretical and Mathematical Physics, 2001, 129:2, 1526–1542

Реферативные базы данных:


© МИАН, 2024