Аннотация:
Определены операторы разрезания и склейки (РС-операторы) при слиянии двух точек ветвления произвольного типа в теории Гурвица. Эти операторы имеют два альтернативных описания: 1) характеры группы $GL$ являются их собственными функциями, а характеры симметрических групп – собственными значениями; 2) их можно реализовать дифференциальными операторами $W$-типа (в частности, действующими на временны́е переменные $\tau$-функции Гурвица–Концевича). Операторы имеют простейшую форму при выражении их в терминах переменных Мивы. Они образуют важную коммутативную ассоциативную алгебру, универсальную алгебру Гурвица, обобщающую все центры групповых алгебр конкретных симметрических групп, которые используются при описании универсальных чисел Гурвица конкретных порядков. Эта алгебра выражает произвольные числа Гурвица как значения выделенной линейной формы на линейном пространстве диаграмм Юнга, вычисленной на произведении всех диаграмм, характеризующих конкретные точки ветвления разветвленного накрытия.
Ключевые слова:матричные модели, числа Гурвица, характеры симметрических групп.