RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2012, том 172, номер 2, страницы 275–284 (Mi tmf6961)

Эта публикация цитируется в 13 статьях

Опрокидывание волн в решениях бездисперсионного уравнения Кадомцева–Петвиашвили при конечных временах

С. В. Манаковa, П. М. Сантиниbc

a Институт теоретической физики им. Л. Д. Ландау РАН, Москва, Россия
b Dipartimento di Fisica, Universitá di Rome "La Sapienza", Rome, Italy
c Istituto Nazionale di Fisica Nucleare, Sezione di Roma 1, Rome, Italy

Аннотация: Обсуждаются некоторые интересные аспекты опрокидывания волн в локализованных решениях бездисперсионного уравнения Кадомцева–Петвиашвили – интегрируемого дифференциального уравнения в частных производных, описывающего распространение слабонелинейных квазиодномерных волн в размерности $2+1$, возникающих в различных физических контекстах, относящихся к акустике, физике плазмы и гидродинамике. Для этого используется недавно разработанное авторами обратное спектральное преобразование многомерных векторных полей и, в частности, связанная с этим обратная задача – нелинейная проблема Римана–Гильберта на вещественной оси. В частности, обсуждается, как производная решения обращается в бесконечность в первой точке опрокидывания в любом направлении плоскости $(x,y)$, за исключением поперечного, и как решение становится трехзначным в компактной области плоскости $(x,y)$ после опрокидывания.

Ключевые слова: интегрируемое нелинейное бездисперсионное дифференциальное уравнение в частных производных, опрокидывание волн в многомерии для слабонелинейных квазиодномерных волн.

DOI: 10.4213/tmf6961


 Англоязычная версия: Theoretical and Mathematical Physics, 2012, 172:2, 1118–1126

Реферативные базы данных:


© МИАН, 2024