Аннотация:
Обсуждаются некоторые интересные аспекты опрокидывания волн в локализованных решениях бездисперсионного уравнения Кадомцева–Петвиашвили – интегрируемого дифференциального уравнения в частных производных, описывающего распространение слабонелинейных квазиодномерных волн в размерности $2+1$, возникающих в различных физических контекстах, относящихся к акустике, физике плазмы и гидродинамике. Для этого используется недавно разработанное авторами обратное спектральное преобразование многомерных векторных полей и, в частности, связанная с этим обратная задача – нелинейная проблема Римана–Гильберта на вещественной оси. В частности, обсуждается, как производная решения обращается в бесконечность в первой точке опрокидывания в любом направлении плоскости $(x,y)$, за исключением поперечного, и как решение становится трехзначным в компактной области плоскости $(x,y)$ после опрокидывания.
Ключевые слова:интегрируемое нелинейное бездисперсионное дифференциальное уравнение в частных производных, опрокидывание волн в многомерии для слабонелинейных квазиодномерных волн.