Аннотация:
Исследуются изометрические вложения в плоское объемлющее пространство некоторых решений уравнений Эйнштейна, обладающих достаточно большой симметрией. Кратко излагается метод построения поверхностей с заданной симметрией. Обсуждаются все минимальные вложения метрики Шварцшильда, полученные с помощью этого метода, а также показывается, как с его помощью можно построить все минимальные вложения для моделей Фридмана. Все вложения классифицируются по способам реализации симметрий соответствующих решений.
Ключевые слова:теория гравитации, изометрическое вложение, теория вложения, вложение
метрики Шварцшильда, асимптотически плоское вложение, дополнительные измерения.