Аннотация:
Дан обзор подхода Решетихина–Тураева к построению некомпактных инвариантов узлов, которые содержат $R$-матрицы, ассоциированные с бесконечномерными представлениями, в основном построенными из квантовых дилогарифмов Фаддеева. Соответствующие формулы можно получить из модулярных преобразований конформных блоков как их монодромии Концевича–Сойбельмана; результаты представляются в виде трансцендентных интегралов, для которых основной проблемой является работа с контурами интегрирования. Обсуждаются возможности выделить более явные и удобные выражения, которые можно сравнивать с обычными (компактными) полиномами узлов, приходящими из конечномерных представлений простых алгебр Ли, с их пределами и свойствами. В частности, квантовые А-полиномы и разностные уравнения для цветных полиномов Джонса те же самые, что и в компактном случае, но в некомпактном случае уравнения однородны, а для обычных полиномов Джонса они имеют нетривиальную правую часть.