RUS  ENG
Полная версия
ЖУРНАЛЫ // Теоретическая и математическая физика // Архив

ТМФ, 2016, том 189, номер 1, страницы 59–68 (Mi tmf9098)

Эта публикация цитируется в 4 статьях

Одна лемма из интегральной геометрии и её приложения: нелокальность в уравнении Павловаи томографическая задача с непрозрачным параболическим объектом

П. Г. Гриневичabc, П. М. Сантиниde

a Институт теоретической физики им. Л.Д. Ландау РАН, Москва, Россия
b Московский государственный университет им. М. В. Ломоносова, Москва, Россия
c Московский физико-технический институт, Долгопрудный, Московская обл., Россия
d Istituto Nazionale di Fisica Nucleare, Sezione di Roma, Roma, Italy
e Dipartimento di Fisica, Università di Roma "La Sapienza", Roma, Italy

Аннотация: Будучи записанными в эволюционной форме, многомерные интегрируемые бездисперсионные уравнения точно так же, как и солитонные уравнения в размерности $2+1$, становятся нелокальными. В частности, уравнение Павлова приводится к виду $v_t=v_xv_y-\partial^{-1}_x\,\partial_y[v_{y}+v^2_{x}]$, где формальный интеграл $\partial^{-1}_{x}$ становится асимметричным интегралом $-\int_x^{\infty}dx'$. Показано, что этот результат можно угадать, используя, по-видимому, новую лемму из интегральной геометрии. Она утверждает, что интеграл от достаточно общей гладкой функции $f(X,Y)$ по параболе в $(X,Y)$-плоскости выражается через интегралы по прямым, не пересекающим эту параболу. Ожидается, что данный результат может найти применения в двумерных линейных задачах томографии с непрозрачными параболическими препятствиями.

Ключевые слова: бездисперсионные уравнения в частных производных, преобразование рассеяния, задача Коши, векторные поля, уравнение Павлова, нелокальность, томография с препятствием.

DOI: 10.4213/tmf9098


 Англоязычная версия: Theoretical and Mathematical Physics, 2016, 189:1, 1450–1458

Реферативные базы данных:


© МИАН, 2024