Аннотация:
Выведена общая формула для решений типа волн-убийц уравнения Захарова с помощью метода билинейных преобразований. Волны-убийцы $N$-го порядка представлены в явном виде через определители $N$-го порядка, матричные элементы которых заданы простыми выражениями. Показано, что фундаментальная волна-убийца представляет собой линейную волну-убийцу с линейным профилем на плоскости $(x,y)$, которая возникает на постоянном фоне при $t\ll 0$ и затем постепенно стремится к постоянному фону при $t\gg 0$. Волны-убийцы высшего порядка, возникающие на постоянном фоне и затем исчезающие в нем, описывают взаимодействие нескольких фундаментальных линейных волн-убийц. Рассмотрены также различные структуры волн-убийц высшего порядка. Аналитически и графически представлены различия между волнами-убийцами уравнения Захарова и уравнения Дэви–Стюартсона первого типа.
Ключевые слова:уравнение Захарова, метод билинейных преобразований, волны-убийцы.