Аннотация:
Разложение алгебры Psd псевдодифференциальных операторов на подалгебру Ли всех дифференциальных операторов без свободного члена и подалгебру Ли всех интегральных операторов приводит к интегрируемой иерархии, называемой строгой иерархией Кадомцева–Петвиашвили. Рассмотрены два Psd-модуля, линеаризация строгой иерархии Кадомцева–Петвиашвили и ее дуальная версия, которые играют существенную роль в геометрическом построении решений. Охарактеризованы специальные векторы из Psd-модулей, так называемые волновые функции, приводящие непосредственно к решениям. Описана связь между иерархией Кадомцева–Петвиашвили и строгой иерархией Кадомцева–Петвиашвили, представлено бесконечномерное многообразие, из которого можно получить упомянутые специальные векторы. Показано, каким образом для любого подпространства $W$ в грассманиане Сигала–Вильсона некоторого гильбертова пространства и любой прямой $\ell$ из $W$ можно построить решение строгой иерархии Кадомцева–Петвиашвили. Кроме того, приведено геометрическое описание дуальной волновой функции и представлена группа коммутирующих потоков, которые оставляют полученные решения неизменными.