Аннотация:
Анализ сетей разнообразной природы, которыми являются сети цитирования, а также социальные или информационно-коммуникационные сети, включает изучение топологических свойств, позволяющих оценивать взаимосвязи между узлами сети и различные характеристики, такие как плотность и диаметр сети, связанные подгруппы узлов и тому подобное. Для этого сеть представляется в виде графа – совокупности вершин и ребер между ними. Одной из важнейших задач анализа сетей является оценивание значимости узла (или в терминах теории графов – вершины). Для этого разработаны различные меры центральности, позволяющие оценить степень значимости вершин сетевого графа в структуре рассматриваемой сети.
Существующее многообразие мер центральности порождает проблему выбора той, которая наиболее полно описывает значимость центральность узла.
Актуальность работы обусловлена необходимостью анализа мер центральности для определения значимости вершин, что является одной из основных задач изучения сетей (графов) в практических приложениях.
Проведенное исследование позволило с использованием метода главных компонент среди известных мер центральности выявить коллинеарные меры, которые в дальнейшем можно исключать из рассмотрения. Это позволяет уменьшить вычислительную сложность расчетов, что особенно важно для сетей с большим числом узлов, и повысить достоверность интерпретации получаемых результатов при оценивании значимости узла в рамках анализируемой сети при решении практических задач.
Выявлены закономерности представления различных мер центральности в пространстве главных компонент, что позволяет классифицировать их с точки зрения близости образов узлов сети, формируемых в определяемом применяемыми мерами центральности пространстве.
Ключевые слова:метод главных компонент, мера центральности, граф, кластеризация, мера сходства.