RUS  ENG
Полная версия
ЖУРНАЛЫ // Информатика и автоматизация // Архив

Информатика и автоматизация, 2022, выпуск 21, том 3, страницы 572–603 (Mi trspy1201)

Эта публикация цитируется в 1 статье

Искусственный интеллект, инженерия данных и знаний

Машинное обучение в задачах base-calling для методов секвенирования нового поколения

А. Г. Бородиновa, В. В. Манойловb, И. В. Заруцкийb, А. И. Петровb, В. Е. Курочкинb, А. С. Сараевb

a АО "Научные приборы"
b Институт аналитического приборостроения Российской академии наук (ИАП РАН)

Аннотация: Развитие технологий секвенирования следующего поколения (NGS) внесло существенный вклад в тенденции снижения затрат и получения массивных данных секвенирования. В Институте аналитического приборостроения РАН разрабатывается аппаратно-программный комплекс (АПК) для расшифровки последовательности нуклеиновых кислот методом массового параллельного секвенирования (Нанофор СПС). Алгоритмы обработки изображений, входящие в состав АПК, играют существенную роль в решении задач расшифровки генома. Финальной частью такого предварительного анализа сырых данных является процесс base-calling. Base-calling — это процесс определения нуклеотидного основания, которое генерирует соответствующее значение интенсивности в каналах флуоресценции для различных длин волн на кадрах изображения проточной ячейки для различных циклов секвенирования методом синтеза. Приведен обширный анализ различных подходов к решению задач base-calling и сводка распространенных процедур, доступных для платформы Illumina. Рассмотрены различные химические процессы, включенные в технологию секвенирования методом синтеза, вызывающие смещения в значениях регистрируемых интенсивностей, включая эффекты фазирование / префазирование (phasing/prephasing), затухания сигнала (signal decay) и перекрестные помехи (cross-talk). Определена обобщённая модель, в рамках которой рассматриваются возможные реализации. Рассмотрены возможные подходы машинного обучения (machine learning) для создания и оценки моделей, реализующих этап обработки base-calling. Подходы ML принимают различные формы, включая обучение без учителя (unsupervised), обучение с ча-стичным привлечением учителя (semi-supervised), обучение с учителем (supervised). В работе показана возможность применения различных алгоритмов машинного обучения на основе платформы Scikit-learn. Отдельной важной задачей является оптимальное выделение признаков, выделенных в обнаруженных кластерах на проточной ячейке для машинного обучения. Наконец, на ряде данных секвенирования для приборов MiSeq Illumina и Нанофор СПС показана перспективность метода машинного обучения для решения задачи base-calling.

Ключевые слова: секвенирование нового поколения, base-calling, биоинформатика, машинное обучение.

УДК: 543.07

Поступила в редакцию: 05.04.2022

DOI: 10.15622/ia.21.3.5



© МИАН, 2024