Аннотация:
Многие приложения цифровой обработки сигналов (DSP) и электронные гаджеты сегодня требуют цифровой фильтрации. Для получения быстрых и улучшенных результатов использовались различные алгоритмы оптимизации. Некоторые исследователи использовали Enhanced Slime Mold Algorithm для разработки 2D БИХ-фильтра. Однако было замечено, что данный алгоритм не обеспечил лучшей структуры решения и имел более низкую скорость сходимости. Чтобы решить эту проблему, для разработки 2D БИХ-фильтра используется алгоритм оптимизации Fused ESMA-Pelican Optimization Algorithm (FEPOA), который объединяет Pelican Optimization Algorithm с Enhanced Slime Mould Algorithm (ESMA). Сначала для инициализации популяции используется хаотический подход, который обеспечивает высококачественную популяцию с превосходным разнообразием, после чего позиция членов популяции заключается в идентификации и корректировке особи в граничной области поиска. После этого с помощью тактического подхода пеликана (Pelican Tactical Approach) изучается пространство поиска и исследовательской мощности FEPOA, потом случайным образом вычисляется пригодность, и обновляется лучшее решение, а затем оно перемещается к итерациям. Фазы FEPOA повторяются до тех пор, пока не завершится выполнение. Далее лучшее решение дает оптимальное решение, которое повышает скорость сходимости, точность сходимости и производительность FEPOA. Затем FEPOA реализуется в БИХ-фильтре для улучшения общей конструкции фильтра. Результаты, предоставленные FEPOA, достигают необходимой пригодности и наилучшего решения для 200 итераций, а амплитудная характеристика достигает максимального значения для = 2,4,8, а также время выполнения 3,0158 с, что намного быстрее, чем другие генетические алгоритмы, часто используемые для 2D БИХ-фильтров.
Ключевые слова:FEPOA, БИХ-фильтр, член популяции, КИХ-фильтр, хаотический подход, тактический подход Пеликана.