Аннотация:
В настоящее время интенсивное развитие систем и технологий регистрации параметров магнитного поля Земли способствует экспоненциальному росту объемов геомагнитных данных, основным источником которых выступают постоянные магнитные станции. Несовершенство применяемой аппаратуры и задействованных каналов передачи информации обуславливает наличие пропусков во временных рядах зарегистрированных данных, что вместе с пространственной анизотропией создает серьезное препятствие для обработки геомагнитных данных при решении прикладных задач. Российские и зарубежные научные организации восстанавливают пропущенные геомагнитные данные методом линейной интерполяции, что обеспечивает приемлемые результаты в условиях спокойной магнитосферы, но значительно искажает временные ряды при изменении окружающей магнитной обстановки. В этой связи возникает актуальная научно-техническая задача разработки подхода к восстановлению геомагнитных данных в условиях возбужденной магнитосферы, обеспечивающего оптимальные метрики качества импутации временных рядов.
Авторами предложен метод восстановления временных рядов, основанный на индуктивном методе обучения алгоритмов. Согласно предлагаемому подходу, каждая магнитная станция оперирует собственной базой знаний, формируемой в ходе регистрации параметров геомагнитного поля и его вариаций. Комбинация значений ряда, предшествующих и следующих за пропуском, является признаковым описанием, применяемым для поиска прецедента в базе знаний магнитной станции. Результат содержит искомый фрагмент временного ряда и заменяет пропущенные значения его уровней. Сложность характера информационного сигнала, обусловленная неспокойной магнитной обстановкой, повышает точность поиска по прецедентам, эффективность которого тем выше, чем большей базой знаний располагает магнитная станция.
Проведенный анализ результатов восстановления пропусков временных рядов геомагнитных данных, зарегистрированных в условиях возбужденной магнитосферы, показал, что предложенный индуктивный метод импутации позволяет повысить точность восстановления пропущенных значений в среднем на 79.54 % по сравнению с используемыми в настоящее время методами, что позволит повысить эффективность обработки геомагнитных данных при решении прикладных задач.
Ключевые слова:геомагнитные данные; временные ряды; пропущенные значения; машинное обучение; обучение по прецедентам; импутация временных рядов.