Аннотация:
Обратное оценивание состоит в восстановлении неизвестного
входного сигнала по “зашумленным” наблюдениям за известным
преобразованием этого сигнала. Оценки, рассматриваемые в статье,
основаны на регуляризованном обратном к данному преобразованию
с использованием техники гильбертовых пространств.
Наибольшее внимание уделяется свойствам, связанным со слабой
сходимостью. Показано, что линейные функционалы допускают
эффективную в смысле Гаека-Ле Кама оценку, при условии, что
они принадлежат подходящему классу. Вне этого класса скорость
сходимости может отличаться от $\sqrt{n}$. На примере рассматривается
“теорема о свертке” для обратной свертки.
Ключевые слова:обратное оценивание, слабая сходимость, асимптотическая эффективность, теорема Гаека-Ле Кама о свертке.
Поступила в редакцию: 12.11.1997 Исправленный вариант: 28.04.1998